Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(4-aminobenzenesulfonato)triaquabis(1,10-phenanthroline)neodymium(III) nitrate tetrahydrate

Peng Ma, Miao-Ling Huang* and Kai-Han Chen

Department of Chemistry and Science of Life, Quanzhou Normal University, Fujian 362000, People's Republic of China Correspondence e-mail: hml301@163.com

Received 23 April 2010; accepted 17 June 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.026; wR factor = 0.066; data-to-parameter ratio = 13.8.

The title complex, $[Nd(C_6H_6NO_3S)_2(C_{12}H_8N_2)_2(H_2O)_3]$ -NO₃·4H₂O, comprises a mononuclear cation, an NO₃⁻ anion and two uncoordinated water molecules; the Nd^{III} cation, one coordinated water molecule, and the NO₃⁻ anion each lie on a twofold axis of symmetry. The Nd^{III} ion exhibits an NdN₄O₅ coordination environment comprising two O atoms of two monodentate 4-aminobenzenesulfonato ligands, four N atoms of the bidentate 1,10-phenanthroline ligands, and three water-O atoms. The coordination geometry is based on a tricapped triangular-prismatic arrangement. The components are consolidated into a three-dimensional network *via* O–H···O, O– H···N and N–H···O hydrogen-bonding interactions

Related literature

For background to the applications of rare earth complexes, see: Li *et al.* (2007); Tang *et al.* (2006); Xie *et al.* (2009).

Experimental

Crystal data $[Nd(C_6H_6NO_3S)_2(C_{12}H_8N_2)_2-(H_2O)_3]NO_3\cdot 4H_2O$ $M_r = 1037.13$ Orthorhombic, *Pccn* a = 17.4990 (18) Å b = 14.2788 (15) Å c = 16.7045 (17) Å

 $V = 4173.9 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.42 \text{ mm}^{-1}$ T = 293 K $0.32 \times 0.22 \times 0.16 \text{ mm}$

metal-organic compounds

 $R_{\rm int} = 0.027$

34751 measured reflections

3883 independent reflections

3287 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003)

 $T_{\min} = 0.656, \ T_{\max} = 0.789$

Refinement

N

$R[F^2 > 2\sigma(F^2)] = 0.026$	282 parameters
$vR(F^2) = 0.066$	H-atom parameters constrained
S = 1.21	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
8883 reflections	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

 Table 1

 Selected bond lengths (Å).

Vd1-O1	2.4007 (18)	Nd1-N3	2.703 (2)
Vd1-O5	2.462 (2)	Nd1-N2	2.763 (2)
Vd1-O4	2.528 (3)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O9−H6W···O3	0.85	1.97	2.810 (3)	171
$O8-H5W \cdot \cdot \cdot N4$	0.86	2.61	3.391 (3)	152
O8-H5WO7	0.86	2.53	3.109 (4)	126
O8−H5W···O6	0.86	1.99	2.842 (3)	170
O8−H4W···O3	0.83	2.03	2.861 (3)	174
$O9-H7W \cdot \cdot \cdot N1^{i}$	0.86	2.24	2.982 (4)	145
$O5-H3W \cdot \cdot \cdot O8^{ii}$	0.85	1.96	2.793 (3)	168
$O5-H2W \cdot \cdot \cdot O9^{iii}$	0.85	1.83	2.670 (3)	171
$O4-H1W \cdot \cdot \cdot O2^{iii}$	0.83	1.95	2.773 (3)	171
$N1-H1A\cdots O8^{iv}$	0.89	2.29	3.127 (4)	158

Symmetry codes: (i) $x - \frac{1}{2}, -y + 1, -z + \frac{1}{2}$, (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, z$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y + 1, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Technology Gallery Foundation of Fujian Province of China (grant No. 2008 F5053).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2665).

References

- Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Li, Y. Q., Ju, Y. L., Zhang, Y. B., Wang, C. Y., Zhang, T. T. & Li, X. (2007). Chin. J. Inorg. Chem. 23, 969–974.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Tang, Y., Tang, K. Z., Zhang, J., Qin, M. Y., Liu, M. Y. & Sun, Y. X. (2006). Acta Chim. Sin. 64, 444–449.
- Xie, Q. F., Huang, M. L. & Chen, Y. M. (2009). Chin. J. Inorg. Chem. 25, 249–255.

Acta Cryst. (2010). E66, m833 [doi:10.1107/S1600536810023445]

Bis(4-aminobenzenesulfonato)triaquabis(1,10-phenanthroline)neodymium(III) nitrate tetrahydrate

P. Ma, M.-L. Huang and K.-H. Chen

Comment

Rare earth complexes have been extensively studied owing to their unique structures and potential applications as biomedical, catalytic, and magnetic agents, as well as nonlinear optical materials (Tang *et al.*, 2006; Li *et al.*, 2007). Therefore, the rational design and synthesis of rare earth supramolecular complexes are highlighted in supramolecular and biochemical research.

The molecules comprising the asymmetric unit of the title compound, (I), are presented in Fig 1. The structure comprises a mononuclear $[Nd(C_6H_6NO_3S)_2(C_{12}H_8N_2)_2(H_2O)_3]^+$ cation, one NO₃⁻ anion and two lattice water molecules. The Nd(III) cation, one coordinated water molecule (O4) and the NO₃⁻ anion are each located on a crystallographic 2-fold axis. The Nd(III) ion is within a distorted tricapped triangular prismatic coordinated water, and four N atom from two 1,10-phenanthroline ligands; see Table 1 for bond distances. The average bond lengths of Nd—O and Nd—N are shorter than the averages of the comparable bond lengths in $[Ln(C_6H_6NO_3S)_2(C_{12}H_8N_2)_2(H_2O)_3]NO_3.(H_2O)_2$ for Ln = La^{III} and Ce^{III} (Xie *et al.*, 2009), consistent with the lanthanide contraction.

The components of the structure are consolidated into a 3-D network via hydrogen bonding interactions, Table 2.

Experimental

An aqueous solution (5 ml) of Nd(NO₃)₃.6H₂O (1.0 mmol) was added slowly to a solution of *p*-aminobenzenesulfonilic acid (1.0 mmol) in H₂O (5 ml). After refluxing for 2 h, a solution of 1,10-phenanthroline (1.0 mmol) in ethanol (95%, 5 ml) was added slowly to the solution. Refluxing was continued for 2 h followed by filteration of the hot mixture. The purple single crystals suitable for X-ray analysis were obtained after three weeks by slow evaporation of the above filtrate held at room temperature. Yield 52%. IR (KBr): 3425(vs), 1666(s), 1624(s), 1600(s), 1572(m), 1515(s), 1506(s), 1419(vs), 1384(vs), 1342(w), 1316(m), 1304(m), 1231(s), 1122(vs), 1039(vs), 1012(s), 848(s), 825(m), 776(m), 729(s), 700(s), 632(m), 574(s) cm⁻¹.

Refinement

H atoms bonded to N and C were placed geometrically and treated as riding, (N-H = 0.89 Å and C-H = 0.93 Å), with $U_{iso}(H) = 1.5U_{eq}(N)$ or $1.2U_{eq}(C)$. The water-bound H atoms were found from Fourier difference maps, fixed at these positions (0.83-0.86 Å), and were refined as riding with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structures of the components of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Hydrogen atoms have been omitted for reasons of clarity. Symmetry operation a: 1-x, 1-y, -z.

Bis(4-aminobenzenesulfonato)triaquabis(1,10-phenanthroline)neodymium(III) nitrate tetrahydrate

Crystal data

$[Nd(C_6H_6NO_3S)_2(C_{12}H_8N_2)_2(H_2O)_3]NO_3{\cdot}4H_2O$	F(000) = 2108
$M_r = 1037.13$	$D_{\rm x} = 1.650 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pccn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 2148 reflections
a = 17.4990 (18) Å	$\theta = 2.5 - 23.3^{\circ}$
<i>b</i> = 14.2788 (15) Å	$\mu = 1.42 \text{ mm}^{-1}$
c = 16.7045 (17) Å	T = 293 K
$V = 4173.9 (7) \text{ Å}^3$	Block, pink
Z = 4	$0.32 \times 0.22 \times 0.16 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3883 independent reflections
Radiation source: fine-focus sealed tube	3287 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.027$
ϕ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2003)	$h = -21 \rightarrow 21$
$T_{\min} = 0.656, T_{\max} = 0.789$	$k = -17 \rightarrow 17$
34751 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.066$	H-atom parameters constrained
<i>S</i> = 1.21	$w = 1/[\sigma^2(F_o^2) + (0.0264P)^2 + 3.2531P]$ where $P = (F_o^2 + 2F_c^2)/3$
3883 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

282 parameters	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Nd1	0.2500	0.2500	0.038262 (10)	0.02429 (7)
S1	0.36306 (4)	0.36807 (5)	0.20699 (4)	0.03383 (16)
01	0.31177 (10)	0.33811 (14)	0.14217 (11)	0.0411 (5)
O2	0.35809 (13)	0.3088 (2)	0.27640 (12)	0.0611 (7)
O3	0.35040 (13)	0.46714 (16)	0.22412 (13)	0.0529 (6)
O4	0.2500	0.2500	-0.11307 (15)	0.0374 (6)
H1W	0.2862	0.2332	-0.1422	0.056*
O5	0.24704 (12)	0.08714 (15)	-0.01000 (13)	0.0483 (5)
H2W	0.2473	0.0658	-0.0576	0.073*
H3W	0.2417	0.0418	0.0226	0.073*
O6	0.2500	0.7500	0.1311 (3)	0.0821 (12)
H4W	0.3105	0.5399	0.1283	0.123*
H5W	0.2734	0.6180	0.1017	0.123*
07	0.2625 (2)	0.6779 (2)	0.2436 (2)	0.0967 (10)
H6W	0.2805	0.4911	0.3142	0.145*
H7W	0.2402	0.5571	0.3568	0.145*
08	0.29153 (17)	0.56444 (16)	0.08766 (14)	0.0662 (7)
09	0.24465 (15)	0.49835 (19)	0.34785 (14)	0.0708 (8)
N1	0.67660 (15)	0.3332 (2)	0.0745 (2)	0.0696 (9)
H1A	0.6763	0.3506	0.0233	0.104*
H1B	0.6911	0.2736	0.0780	0.104*
N2	0.36395 (12)	0.14185 (16)	0.10577 (13)	0.0346 (5)
N3	0.39407 (13)	0.26033 (15)	-0.01948 (13)	0.0311 (5)
N4	0.2500	0.7500	0.2066 (3)	0.0571 (11)
C1	0.45674 (14)	0.35885 (18)	0.16953 (14)	0.0292 (6)
C2	0.50570 (16)	0.2901 (2)	0.19801 (16)	0.0371 (6)
H2	0.4895	0.2495	0.2381	0.045*
C3	0.57842 (17)	0.2820 (2)	0.1670 (2)	0.0450 (7)
H3	0.6113	0.2365	0.1871	0.054*
C4	0.60297 (16)	0.3411 (2)	0.10621 (18)	0.0426 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.55417 (17)	0.4112 (2)	0.07957 (17)	0.0422 (7)
Н5	0.5707	0.4528	0.0404	0.051*
C6	0.48166 (16)	0.4196 (2)	0.11059 (16)	0.0370 (6)
H6	0.4493	0.4663	0.0918	0.044*
C7	0.35188 (18)	0.0874 (2)	0.16914 (19)	0.0480 (8)
H7	0.3047	0.0908	0.1946	0.058*
C8	0.4070 (2)	0.0249 (3)	0.1995 (2)	0.0576 (9)
H8	0.3959	-0.0118	0.2441	0.069*
C9	0.4759 (2)	0.0187 (2)	0.1636 (2)	0.0548 (9)
Н9	0.5125	-0.0230	0.1827	0.066*
C10	0.49175 (16)	0.0758 (2)	0.09720 (18)	0.0423 (7)
C11	0.56503 (18)	0.0738 (3)	0.0574 (2)	0.0541 (9)
H11	0.6023	0.0318	0.0743	0.065*
C12	0.57972 (17)	0.1318 (3)	-0.0037 (2)	0.0528 (9)
H12	0.6271	0.1293	-0.0288	0.063*
C13	0.52349 (16)	0.1980 (2)	-0.03103 (17)	0.0397 (7)
C14	0.53933 (17)	0.2646 (2)	-0.09115 (18)	0.0467 (8)
H14	0.5869	0.2657	-0.1159	0.056*
C15	0.48461 (17)	0.3270 (2)	-0.11248 (17)	0.0427 (7)
H15	0.4948	0.3727	-0.1506	0.051*
C16	0.41244 (16)	0.3217 (2)	-0.07639 (16)	0.0361 (6)
H16	0.3751	0.3636	-0.0932	0.043*
C17	0.44996 (14)	0.19932 (19)	0.00458 (16)	0.0305 (6)
C18	0.43377 (15)	0.13720 (18)	0.07021 (16)	0.0319 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.02232 (11)	0.02820 (11)	0.02233 (11)	0.00157 (8)	0.000	0.000
S1	0.0281 (3)	0.0459 (4)	0.0275 (3)	-0.0015 (3)	-0.0001 (3)	-0.0048 (3)
01	0.0293 (10)	0.0500 (12)	0.0442 (11)	-0.0011 (9)	-0.0082 (8)	-0.0131 (10)
O2	0.0438 (13)	0.099 (2)	0.0406 (12)	0.0019 (13)	0.0119 (10)	0.0245 (12)
O3	0.0455 (13)	0.0524 (13)	0.0607 (14)	0.0027 (10)	0.0018 (10)	-0.0276 (11)
O4	0.0294 (13)	0.0596 (18)	0.0231 (13)	0.0086 (12)	0.000	0.000
O5	0.0782 (16)	0.0345 (11)	0.0323 (10)	0.0046 (10)	-0.0075 (10)	-0.0015 (9)
O6	0.112 (4)	0.070 (3)	0.064 (3)	0.030 (2)	0.000	0.000
O7	0.136 (3)	0.0635 (19)	0.091 (2)	0.0118 (18)	0.003 (2)	0.0209 (19)
08	0.095 (2)	0.0502 (14)	0.0531 (14)	0.0019 (14)	0.0048 (14)	-0.0095 (12)
09	0.099 (2)	0.0661 (17)	0.0477 (14)	0.0286 (14)	0.0217 (13)	0.0124 (13)
N1	0.0397 (16)	0.081 (2)	0.088 (2)	-0.0044 (15)	0.0208 (16)	-0.0120 (19)
N2	0.0288 (12)	0.0390 (13)	0.0359 (12)	0.0026 (10)	-0.0036 (10)	0.0035 (10)
N3	0.0296 (12)	0.0345 (13)	0.0291 (11)	-0.0014 (9)	-0.0006 (9)	-0.0023 (10)
N4	0.055 (3)	0.052 (3)	0.064 (3)	0.0073 (19)	0.000	0.000
C1	0.0276 (13)	0.0366 (15)	0.0233 (12)	-0.0038 (11)	-0.0015 (10)	-0.0030 (11)
C2	0.0365 (16)	0.0398 (15)	0.0352 (15)	-0.0041 (13)	-0.0041 (12)	0.0061 (13)
C3	0.0324 (16)	0.0465 (17)	0.0559 (19)	0.0029 (13)	-0.0060 (14)	0.0006 (15)
C4	0.0315 (15)	0.0512 (18)	0.0449 (17)	-0.0100 (13)	0.0041 (13)	-0.0140 (15)
C5	0.0458 (17)	0.0458 (17)	0.0349 (15)	-0.0116 (14)	0.0068 (13)	0.0031 (14)

C6	0.0400 (16)	0.0374 (15)	0.0337 (14)	-0.0013 (12)	-0.0018 (12)	0.0031 (12)
C7	0.0408 (17)	0.056 (2)	0.0474 (18)	0.0022 (15)	-0.0044 (14)	0.0198 (16)
C8	0.057 (2)	0.060 (2)	0.056 (2)	0.0021 (17)	-0.0161 (17)	0.0238 (17)
C9	0.052 (2)	0.0476 (19)	0.065 (2)	0.0147 (15)	-0.0201 (17)	0.0099 (17)
C10	0.0363 (16)	0.0383 (16)	0.0523 (18)	0.0098 (13)	-0.0122 (13)	-0.0072 (14)
C11	0.0380 (18)	0.056 (2)	0.068 (2)	0.0207 (15)	-0.0120 (16)	-0.0133 (18)
C12	0.0272 (15)	0.068 (2)	0.064 (2)	0.0101 (15)	0.0037 (15)	-0.0190 (19)
C13	0.0302 (15)	0.0477 (18)	0.0412 (16)	-0.0022 (13)	0.0007 (12)	-0.0165 (14)
C14	0.0310 (15)	0.069 (2)	0.0399 (16)	-0.0109 (15)	0.0081 (13)	-0.0170 (16)
C15	0.0450 (17)	0.0521 (18)	0.0312 (14)	-0.0155 (14)	0.0048 (13)	-0.0052 (14)
C16	0.0361 (15)	0.0407 (16)	0.0315 (14)	-0.0054 (12)	-0.0002 (12)	-0.0016 (13)
C17	0.0242 (13)	0.0335 (15)	0.0337 (14)	0.0001 (11)	-0.0038 (11)	-0.0110 (12)
C18	0.0283 (14)	0.0320 (14)	0.0354 (14)	0.0015 (11)	-0.0072 (11)	-0.0072 (12)

Geometric parameters (Å, °)

Nd1—O1	2.4007 (18)	C1—C2	1.387 (4)
Nd1—O1 ⁱ	2.4007 (18)	C1—C6	1.383 (4)
Nd1—O5 ⁱ	2.462 (2)	C2—C3	1.379 (4)
Nd1—O5	2.462 (2)	С2—Н2	0.9300
Nd1—O4	2.528 (3)	C3—C4	1.389 (4)
Nd1—N3 ⁱ	2.703 (2)	С3—Н3	0.9300
Nd1—N3	2.703 (2)	C4—C5	1.389 (4)
Nd1—N2	2.763 (2)	C5—C6	1.376 (4)
Nd1—N2 ⁱ	2.763 (2)	С5—Н5	0.9300
S1—O2	1.438 (2)	С6—Н6	0.9300
S1—O3	1.460 (2)	С7—С8	1.408 (4)
S1—O1	1.4701 (18)	С7—Н7	0.9300
S1—C1	1.760 (3)	C8—C9	1.350 (5)
O4—H1W	0.8343	С8—Н8	0.9300
O5—H2W	0.8517	C9—C10	1.404 (4)
O5—H3W	0.8502	С9—Н9	0.9300
O6—N4	1.262 (6)	C10-C18	1.415 (4)
O7—N4	1.220 (4)	C10—C11	1.445 (4)
O8—H4W	0.8327	C11—C12	1.339 (5)
O8—H5W	0.8602	C11—H11	0.9300
O9—H6W	0.8478	C12—C13	1.439 (4)
O9—H7W	0.8562	C12—H12	0.9300
N1—C4	1.398 (4)	C13—C14	1.411 (4)
N1—H1A	0.8900	C13—C17	1.418 (4)
N1—H1B	0.8900	C14—C15	1.355 (4)
N2—C7	1.330 (4)	C14—H14	0.9300
N2-C18	1.360 (3)	C15—C16	1.401 (4)
N3—C16	1.332 (3)	C15—H15	0.9300
N3—C17	1.370 (3)	С16—Н16	0.9300
N4—O7 ⁱⁱ	1.220 (4)	C17—C18	1.438 (4)
01—Nd1—O1 ⁱ	87.40 (10)	07 ⁱⁱ —N4—O7	119.2 (5)

01—Nd1—O5 ⁱ	74.47 (7)	07 ⁱⁱ —N4—O6	120.4 (3)
$O1^{i}$ —Nd1— $O5^{i}$	137.84 (7)	O7—N4—O6	120.4 (3)
O1—Nd1—O5	137.84 (7)	C2—C1—C6	119.6 (2)
O1 ⁱ —Nd1—O5	74.47 (7)	C2C1S1	120.4 (2)
O5 ⁱ —Nd1—O5	141.77 (10)	C6—C1—S1	120.0 (2)
O1—Nd1—O4	136.30 (5)	C1—C2—C3	120.1 (3)
O1 ⁱ —Nd1—O4	136.30 (5)	C1—C2—H2	120.0
O5 ⁱ —Nd1—O4	70.89 (5)	С3—С2—Н2	120.0
O5—Nd1—O4	70.89 (5)	C2—C3—C4	120.6 (3)
O1—Nd1—N3 ⁱ	134.94 (6)	С2—С3—Н3	119.7
O1 ⁱ —Nd1—N3 ⁱ	79.02 (6)	С4—С3—Н3	119.7
O5 ⁱ —Nd1—N3 ⁱ	87.38 (7)	C5—C4—C3	118.8 (3)
O5—Nd1—N3 ⁱ	79.16 (7)	C5—C4—N1	120.2 (3)
O4—Nd1—N3 ⁱ	69.10 (5)	C3—C4—N1	120.9 (3)
O1—Nd1—N3	79.02 (6)	C6—C5—C4	120.6 (3)
O1 ⁱ —Nd1—N3	134.94 (6)	С6—С5—Н5	119.7
O5 ⁱ —Nd1—N3	79.16 (7)	С4—С5—Н5	119.7
O5—Nd1—N3	87.38 (7)	C5—C6—C1	120.3 (3)
O4—Nd1—N3	69.10 (5)	С5—С6—Н6	119.9
N3 ⁱ —Nd1—N3	138.20 (9)	С1—С6—Н6	119.9
O1—Nd1—N2	70.91 (7)	N2—C7—C8	123.3 (3)
O1 ⁱ —Nd1—N2	74.75 (6)	N2—C7—H7	118.4
O5 ⁱ —Nd1—N2	130.28 (7)	С8—С7—Н7	118.4
O5—Nd1—N2	67.72 (7)	C9—C8—C7	119.5 (3)
O4—Nd1—N2	114.09 (5)	С9—С8—Н8	120.2
N3 ⁱ —Nd1—N2	142.02 (6)	С7—С8—Н8	120.2
N3—Nd1—N2	60.20 (7)	C8—C9—C10	119.3 (3)
O1—Nd1—N2 ⁱ	74.75 (6)	С8—С9—Н9	120.3
O1 ⁱ —Nd1—N2 ⁱ	70.91 (7)	С10—С9—Н9	120.3
O5 ⁱ —Nd1—N2 ⁱ	67.72 (7)	C9—C10—C18	118.0 (3)
O5—Nd1—N2 ⁱ	130.28 (7)	C9—C10—C11	121.9 (3)
O4—Nd1—N2 ⁱ	114.09 (5)	C18—C10—C11	120.1 (3)
N3 ⁱ —Nd1—N2 ⁱ	60.20 (7)	C12—C11—C10	120.6 (3)
N3—Nd1—N2 ⁱ	142.02 (6)	C12—C11—H11	119.7
N2—Nd1—N2 ⁱ	131.82 (9)	C10-C11-H11	119.7
O2—S1—O3	113.77 (15)	C11—C12—C13	121.1 (3)
O2—S1—O1	112.68 (14)	C11—C12—H12	119.4
O3—S1—O1	109.49 (12)	C13—C12—H12	119.4
O2—S1—C1	107.40 (13)	C14—C13—C17	117.9 (3)
O3—S1—C1	106.48 (13)	C14—C13—C12	122.3 (3)
01—S1—C1	106.57 (11)	C17—C13—C12	119.8 (3)
S1—O1—Nd1	163.72 (13)	C15—C14—C13	119.4 (3)
NdI-O4-HIW	125.7	C15—C14—H14	120.3
NdI—O5—H2W	130.1	C13—C14—H14	120.3

Nd1—O5—H3W	120.8	C14—C15—C16	119.2 (3)
H2W—O5—H3W	109.0	C14—C15—H15	120.4
H4W—O8—H5W	107.4	C16—C15—H15	120.4
H6W—O9—H7W	107.6	N3—C16—C15	124.0 (3)
C4—N1—H1A	109.6	N3—C16—H16	118.0
C4—N1—H1B	108.3	C15—C16—H16	118.0
H1A—N1—H1B	109.5	N3—C17—C13	122.2 (3)
C7—N2—C18	117.5 (2)	N3—C17—C18	118.4 (2)
C7—N2—Nd1	122.47 (18)	C13—C17—C18	119.4 (2)
C18—N2—Nd1	119.83 (17)	N2—C18—C10	122.4 (3)
C16—N3—C17	117.1 (2)	N2—C18—C17	118.7 (2)
C16—N3—Nd1	121.03 (18)	C10—C18—C17	118.9 (2)
C17—N3—Nd1	121.76 (17)		
O2—S1—O1—Nd1	-61.6 (5)	O1—S1—C1—C6	69.4 (2)
O3—S1—O1—Nd1	170.7 (4)	C6—C1—C2—C3	-0.7 (4)
C1—S1—O1—Nd1	55.9 (5)	S1—C1—C2—C3	178.5 (2)
O1 ⁱ —Nd1—O1—S1	77.3 (4)	C1—C2—C3—C4	-1.2 (4)
O5 ⁱ —Nd1—O1—S1	-141.2 (5)	C2—C3—C4—C5	2.8 (4)
O5—Nd1—O1—S1	14.0 (5)	C2—C3—C4—N1	-179.9 (3)
O4—Nd1—O1—S1	-102.7 (4)	C3—C4—C5—C6	-2.6 (4)
N3 ⁱ —Nd1—O1—S1	148.9 (4)	N1—C4—C5—C6	-179.9 (3)
N3—Nd1—O1—S1	-59.5 (4)	C4—C5—C6—C1	0.8 (4)
N2—Nd1—O1—S1	2.5 (4)	C2—C1—C6—C5	0.9 (4)
N2 ⁱ —Nd1—O1—S1	148.2 (5)	S1—C1—C6—C5	-178.3 (2)
O1—Nd1—N2—C7	88.4 (2)	C18—N2—C7—C8	-1.2 (5)
O1 ⁱ —Nd1—N2—C7	-4.2 (2)	Nd1—N2—C7—C8	173.5 (3)
O5 ⁱ —Nd1—N2—C7	136.7 (2)	N2—C7—C8—C9	0.0 (5)
O5—Nd1—N2—C7	-83.3 (2)	C7—C8—C9—C10	0.9 (5)
O4—Nd1—N2—C7	-138.5 (2)	C8—C9—C10—C18	-0.6 (5)
N3 ⁱ —Nd1—N2—C7	-52.1 (3)	C8—C9—C10—C11	178.6 (3)
N3—Nd1—N2—C7	176.5 (2)	C9—C10—C11—C12	-177.1 (3)
N2 ⁱ —Nd1—N2—C7	41.5 (2)	C18—C10—C11—C12	2.1 (5)
O1—Nd1—N2—C18	-96.98 (19)	C10-C11-C12-C13	0.4 (5)
O1 ⁱ —Nd1—N2—C18	170.5 (2)	C11—C12—C13—C14	175.2 (3)
O5 ⁱ —Nd1—N2—C18	-48.6 (2)	C11—C12—C13—C17	-2.9 (5)
O5—Nd1—N2—C18	91.31 (19)	C17—C13—C14—C15	0.2 (4)
O4—Nd1—N2—C18	36.1 (2)	C12-C13-C14-C15	-177.9 (3)
N3 ⁱ —Nd1—N2—C18	122.54 (18)	C13—C14—C15—C16	-2.3 (4)
N3—Nd1—N2—C18	-8.93 (17)	C17—N3—C16—C15	0.1 (4)
N2 ⁱ —Nd1—N2—C18	-143.9 (2)	Nd1—N3—C16—C15	-175.9 (2)
O1—Nd1—N3—C16	-101.0 (2)	C14—C15—C16—N3	2.3 (4)
O1 ⁱ —Nd1—N3—C16	-176.01 (18)	C16—N3—C17—C13	-2.5 (4)
O5 ⁱ —Nd1—N3—C16	-24.94 (19)	Nd1—N3—C17—C13	173.55 (18)
O5—Nd1—N3—C16	119.1 (2)	C16—N3—C17—C18	175.2 (2)
O4—Nd1—N3—C16	48.57 (18)	Nd1—N3—C17—C18	-8.8 (3)
N3 ⁱ —Nd1—N3—C16	48.57 (18)	C14—C13—C17—N3	2.3 (4)

N2—Nd1—N3—C16	-175.2 (2)	C12—C13—C17—N3	-179.5 (3)
N2 ⁱ —Nd1—N3—C16	-54.2 (2)	C14—C13—C17—C18	-175.3 (2)
O1—Nd1—N3—C17	83.12 (19)	C12-C13-C17-C18	2.8 (4)
O1 ⁱ —Nd1—N3—C17	8.1 (2)	C7—N2—C18—C10	1.5 (4)
O5 ⁱ —Nd1—N3—C17	159.2 (2)	Nd1-N2-C18-C10	-173.37 (19)
O5—Nd1—N3—C17	-56.76 (19)	C7—N2—C18—C17	-176.3 (3)
O4—Nd1—N3—C17	-127.28 (19)	Nd1-N2-C18-C17	8.8 (3)
N3 ⁱ —Nd1—N3—C17	-127.28 (19)	C9—C10—C18—N2	-0.6 (4)
N2—Nd1—N3—C17	8.96 (17)	C11-C10-C18-N2	-179.8 (3)
N2 ⁱ —Nd1—N3—C17	129.96 (18)	C9—C10—C18—C17	177.2 (3)
O2—S1—C1—C2	11.2 (3)	C11-C10-C18-C17	-2.0 (4)
O3—S1—C1—C2	133.4 (2)	N3-C17-C18-N2	-0.3 (4)
O1—S1—C1—C2	-109.8 (2)	C13-C17-C18-N2	177.5 (2)
O2—S1—C1—C6	-169.6 (2)	N3-C17-C18-C10	-178.1 (2)
O3—S1—C1—C6	-47.4 (2)	C13—C17—C18—C10	-0.4 (4)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, *z*; (ii) -*x*+1/2, -*y*+3/2, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O9—H6W…S1	0.85	2.90	3.646 (2)	149
O9—H6W…O3	0.85	1.97	2.810 (3)	171
O8—H5W…N4	0.86	2.61	3.391 (3)	152
O8—H5W…O7	0.86	2.53	3.109 (4)	126
O8—H5W…O6	0.86	1.99	2.842 (3)	170
O8—H4W…S1	0.83	2.93	3.661 (3)	148
O8—H4W…O3	0.83	2.03	2.861 (3)	174
O9—H7W…N1 ⁱⁱⁱ	0.86	2.24	2.982 (4)	145
O5—H3W···O8 ⁱ	0.85	1.96	2.793 (3)	168
O5—H2W…O9 ^{iv}	0.85	1.83	2.670 (3)	171
O4—H1W···O2 ^{iv}	0.83	1.95	2.773 (3)	171
N1—H1A···O8 ^v	0.89	2.29	3.127 (4)	158
N1—H1A···O8 ^v	0.89	2.29	3.127 (4)	158

Symmetry codes: (iii) x-1/2, -y+1, -z+1/2; (i) -x+1/2, -y+1/2, z; (iv) x, -y+1/2, z-1/2; (v) -x+1, -y+1, -z.

Fig. 1